Showing posts with label sains. Show all posts
Showing posts with label sains. Show all posts

Wednesday, December 17, 2014

Quantum Computer (Komputer Kuantum)

Teknologi komputer merupakan salah satu teknologi yang paling cepat mengalami perkembangan dan kemajuan. Komputer-komputer yang ada saat ini sudah mencapai kemampuan yang sangat mengagumkan. Tetapi kedahsyatan komputer tercanggih yang ada saat ini pun masih belum bisa memuaskan keinginan manusia yang bermimpi untuk membuat sebuah Supercomputer yang benar-benar memiliki kecepatan super. Komputer yang nantinya layak untuk benar-benar disebut sebagai Komputer Super ini adalah Komputer Kuantum. Teori tentang komputer kuantum ini pertama kali dicetuskan oleh fisikawan dari Argonne National Laboratory sekitar 20 tahun lalu. 
Paul Benioff merupakan orang pertama yang mengaplikasikan teori fisika kuantum pada dunia komputer di tahun 1981. 

Komputer yang biasa kita gunakan sehari-hari merupakan komputer digital. Komputer digital sangat berbeda dengan komputer kuantum yang super itu. Komputer digital bekerja dengan bantuan microprocessor yang berbentuk chip kecil yang tersusun dari banyak transistor. Microprocessor biasanya lebih dikenal dengan istilah Central Processing Unit (CPU) dan merupakan ‘jantung’nya komputer. Microprocessor yang pertama adalah Intel 4004 yang diperkenalkan pada tahun 1971. Komputer pertama ini cuma bisa melakukan perhitungan penjumlahan dan pengurangan saja. Memory komputer menggunakan sistem binary atau sistem angka basis 2 (0 dan 1) yang dikenal sebagai BIT (singkatan dari Binary digIT). Konversi dari angka desimal yang biasa kita gunakan (angka berbasis 10 yang memiliki nilai 0 sampai 9) adalah sebagai berikut: 


0 = 0 
1 = 1 
2 = 10 
3 =  11 
4 = 100 
5 = 101 
6 = 110 
7 = 111 
8 = 1000 
9 = 1001 

10 = 1010 
11 = 1011 
12 = 1100 
13 = 1101 
14 = 1110 
15 = 1111 
16 = 10000 
17 = 10001



Kalau kita ingin menghitung angka apa yang dilambangkan oleh 101001 caranya sebagai berikut (menggunakan sistem 2n): 
(1 x 25) + (0 x 24) + (1 x 23) + (0 x 22) + (0 x 21) + (1 x 20) = 32 + 0 + 8 + 0 + 0 +1 = 41. 




Sistem inilah yang selama ini kita gunakan saat kita mengolah informasi menggunakan komputer. Quantum Computer atau komputer kuantum memanfaatkan fenomena ‘aneh’ yang disebut sebagai superposisi. Dalam mekanika kuantum, suatu partikel bisa berada dalam dua keadaan sekaligus. Inilah yang disebut keadaan superposisi. Dalam komputer kuantum, selain 0 dan 1 dikenal pula superposisi dari keduanya. Ini berarti keadaannya bisa berupa 0 dan 1, bukan hanya 0 atau 1 seperti di komputer digital biasa. Komputer kuantum tidak menggunakan Bits tetapi QUBITS (Quantum Bits). Karena kemampuannya untuk berada di bermacam keadaan (multiple states), komputer kuantum memiliki potensi untuk melaksanakan berbagai perhitungan secara simultan sehingga jauh lebih cepat dari komputer digital.  

Komputer kuantum menggunakan partikel yang bisa berada dalam dua keadaan sekaligus, misalnya atom-atom yang pada saat yang sama berada dalam keadaan tereksitasi dan tidak tereksitasi, atau foton (partikel cahaya) yang berada di dua tempat berbeda pada saat bersamaan. Apa maksudnya ini? 

Atom memiliki konfigurasi spin. Spin atom bisa ke atas (up), bisa pula ke bawah (down). Misalnya saat spin atom mengarah ke atas (up) kita beri lambang 1, sedangkan spin down adalah 0 (seperti dalam sistem binary di komputer digital). Atom-atom berada dalam keadaan superposisi (memiliki spin up dan down secara 
bersamaan) sampai kita melakukan pengukuran. Tindakan pengukuran memaksa atom untuk ‘memilih’ salah satu dari kedua kemungkinan itu. Ini berarti sesudah kita melakukan pengukuran, atom tidak lagi berada dalam keadaan superposisi. Atom yang sudah mengalami pengukuran memiliki spin yang tetap: up atau down. 

Saat konsep ini diterapkan dalam komputer kuantum, keadaan superposisi terjadi pada saat proses perhitungan sedang berlangsung. Sistem perhitungan pada komputer kuantum ini berbeda dengan komputer digital. Komputer digital melakukan perhitungan secara linier, sedangkan komputer kuantum melakukan semua perhitungan secara bersamaan (karena ada multiple states semua perhitungan dapat berlangsung secara simultan di semua state). Ini berarti ada banyak kemungkinan hasil perhitungan. Untuk mengetahui jawabannya (hasil perhitungannya) kita harus melakukan pengukuran qubit. Tindakan pengukuran qubit ini menghentikan proses perhitungan dan memaksa sistem untuk ‘memilih’ salah satu dari semua kemungkinan jawaban yang ada.  

Dengan sistem paralelisme perhitungan ini, kita bisa membayangkan betapa cepatnya komputer kuantum. Komputer digital yang paling canggih saat ini (setara dengan komputer kuantum 40 qubit) memiliki kemampuan untuk mengolah semua data dalam buku telepon di seluruh dunia (untuk menemukan satu nomor telepon tertentu) dalam waktu satu bulan. Jika menggunakan komputer kuantum proses ini hanya memerlukan waktu 27 menit!  

Ada satu fenomena ‘aneh’ lain dari mekanika kuantum yang juga dimanfaatkan dalam teknologi komputer kuantum: Entanglement. Jika dua atom mendapatkan gaya tertentu (outside force) kedua atom tersebut bisa masuk pada keadaan ‘entangled’. Atom-atom yang saling terhubungkan dalam entanglement ini akan tetap terhubungkan walaupun jaraknya berjauhan. Analoginya adalah atom-atom tersebut seperti sepasang manusia yang punya ‘telepati’. Jika yang satu dicubit, maka pasangannya (di mana pun ia berada) akan merasa sakit. Perlakuan terhadap salah satu atom mempengaruhi keadaan atom pasangannya. Jika yang satu memiliki spin up (kita baru bisa mengetahuinya setelah melakukan pengukuran) maka kita langsung mengetahui bahwa pasangannya pasti memiliki spin down tanpa kita perlu mengukurnya kembali. Ini melambangkan sistem komunikasi yang super cepat. 

Komunikasi menggunakan komputer kuantum bisa mencapai kecepatan yang begitu luar biasa karena informasi dari satu tempat ke tempat lain dapat ditransfer secara instant. Begitu cepatnya sehingga terlihat seakan-akan mengalahkan kecepatan cahaya! 

Saat ini perkembangan teknologi sudah menghasilkan komputer kuantum sampai 7 qubit, tetapi menurut penelitian dan analisa yang ada, dalam beberapa tahun mendatang teknologi komputer kuantum bisa mencapai 100 qubit. Kita bisa membayangkan betapa cepatnya komputer masa depan nanti. Semua perhitungan yang biasanya butuh waktu berbulan-bulan, bertahun-tahun, bahkan berabad-abad pada akhirnya bisa dilaksanakan hanya dalam hitungan menit saja jika kita menggunakan komputer kuantum yang super canggih dan super cepat itu. 

Di masa mendatang kita akan menggunakan komputer yang tidak lagi tersusun dari transistor-transistor mini seperti sekarang, Komputer kuantum tidak lagi memerlukan chip komputer yang semakin lama semakin padat karena semakin berlipatgandanya jumlah transistor yang dibutuhkan untuk meningkatkan kinerja komputer. Komputer masa depan justru dipenuhi oleh cairan organik sebagai ‘jantung’nya. Cairan organik ini mengandung atom-atom/partikel-partikel yang bisa berada dalam keadaan superposisi tersebut. Ini berarti, kita benar-benar memanfaatkan zat organik alami untuk menjadi ‘kalkulator’ canggih karena ternyata cairan organik dari alam memiliki bakat berhitung!   











Oleh: Prof. Yohanes Surya

Thursday, October 16, 2014

Robot Humanoid (NAO)

Nao adalah robot humanoid berukuran sedang yang otonom dan dapat diprogram, yang dikembangkan oleh Aldebaran Robotics, sebuah perusahaan startup dari Perancis yang berkantor pusat di Paris. Proyek Nao diluncurkan pada tahun 2004. Pada tanggal 15 Agustus 2007 Nao menggantikan robot anjing milik Sony yaitu Aibo sebagai robot yang digunakan dalam kompetisi Liga Platform Standar (LPS) pada Piala dunia sepak bola robot (Robocup), suatu kompetisi robotika internasional. Nao sudah digunakan dalam RoboCup 2008 dan 2009, dan NaoV3R terpilih sebagai platform untuk LPS pada RoboCup 2010.
Nao edisi akademis tersedia untuk universitas dan laboratorium untuk kepentingan riset dan pendidikan, dan diproyeksikan untuk didistribusikan kepada publik tahun 2011. Pada bulan Oktober 2010, University of Tokyo membeli 30 Nao robots untuk Nakamura Lab mereka, dengan harapan untuk mengembangkan robot tersebut menjadi asisten laboratorium yang aktif.
Pada musim panas tahun 2010, Nao membuat berita global dengan melakukan rutin tarian yang disinkronisasi dalam acara Shanghai Expo di Cina. Di bulan Desember 2010, robot Nao mampu mendemonstrasikan rutin komedi, dan versi terkini yang telah dirilis memiliki fitur sculpted arms dan motor yang telah dikembangkan. Nao juga sudah hadir di Indonesia bersamaan dengan dibukanya World Robotic Explorer, rumah robot pertama di dunia yang didirikan di Jakarta tanggal 11 Desember 2010.

Berkas:Nao robot, Jaume University.jpg
Demonstrasi robot Nao di Jaume I University Spanyol tahun 2011


SPESIFIKASI
Nao edisi Robocup mempunyai 21 Derajat kebebasan (DOF), sementara edisi akademis memiliki 25 DOF, karena dibangun dengan dua tangan yang memiliki kemampuan mencengkeram. Namun, angka 25 untuk DOF secara teknis menyesatkan, karena setiap kaki memiliki poros gerakan "HipYawPitch" yang berjumlah 1 DOF untuk panggul.
Semua versi Nao memiliki fitur satuan pengukuran inersiaan empat sensor ultrasonik yang menjaga stabilitas Nao.
Nao juga memiliki fitur sistem multimedia yang powerful, termasuk empat mikrophone, dua speaker dan dua kamera CMOS, empat sintesis text-to-speech, lokalisasi suara dan pengenalan wajah dan bentuk, dan variasi kemampuan lainnya.
Paket Nao termasuk perangkat lunak program bernama Aldebaran Choregraphe, dan Nao juga kompartibel dengan Microsoft Robotics StudioCyberbotics Webots, dan Gostai Urbi Studio.

Spesifikasi Teknis
Tinggi58 cm
Berat4,3 kg
Otonomi90 min. (berjalan konstan)
Derajat kebebasan (DOF)21 s.d. 25
CPUx86 AMD Geode 500 MHz
Built-in OSLinux
Compatible OSWindows, Mac OS, Linux
Bahasa PemrogramanC++CPythonUrbi.Net
Penglihatan2 kamera CMOS 640×480
KonektivitasEthernet, Wi-Fi




Sumber : Wikipedia Indonesia


Tuesday, October 14, 2014

Penemuan Sains yang membuka mata dunia

lmu pengetahuan terus bergerak maju. Berbagai penemuan baru yang mengejutkan dan membuka mata manusia menjadi tonggak penting dalam peradaban. Bahwa hal yang dulu hanya khayalan kini telah menjadi sebuah kenyataan.
Beberapa hal yang patut kita ketahui misalnya terpapar pada 8 daftar di bawah ini.

1. Ununseptium



Unuseptium yang untuk sementara dinamai unsur ke 117 merupakan kombinasi antara isotop berkelium dan kalsium yang diciptakan para ilmuwan di Dubna, Rusia. Para fisikawan mengatakan bahwa unsur ini bisa menunjukkan “island of stability”, dimana unsur yang terberat bisa bertahan selama berbulan-bulan.
Unsur dengan nomor atom 117 ini dibuat dengan cara memborbardir 249Bk dengan ion kalsium dalam siklotron JINR U4000 selama 150 hari yang terdapat di Dubna.

Keseluruhan proses yang memakan waktu tidak lebih dari 320 hari yang merupakan waktu paruh unsur Bk (150 hari dalam siklotron+analisis data+review oleh tim peneliti) ini akhirnya berhasil menghasilkan 6 atom Ununseptium. Masing-masing dari keenam atom tersebut kemudian meluruh dengan memancarkan partikel alfa menjadi unsur bernomor atom 115 kemudian 113 sampai intinya terbelah menjadi dua atom yang lebih stabil.


2. Gen Penyebab Penuaan


Manusia memiliki sel tubuh yang regeneratif, bisa terus memperbarui jumlahnya. Namun teka-teki penyebab ketuaan menjad perhatian ilmuwan. Secara genetika, ternyata terdapat unsur penyebab kita tak bisa awet muda selamanya.
Dan pada beberapa orang ada yang tampak tua lebih cepat. Apa sebabnya? Para ahli genetika menemukan bahwa hal tersebut disebabkan oleh ulah gen TERC. Gen tersebut menentukan panjang telomer, semacam tutup yang terdapat pada ujung kromosom. 
Orang pembawa gen itu akan cenderung mengalami penuaan lebih cepat sebab telomernya akan memendek lebih cepat. Orang yang membawa satu copy gen itu misalnya, akan tampak sama tua dengan orang yang 3-4 tahun lebih tua darinya. Penelitian tentang gen TERC itu dipublikasikan dalam Jurnal Genetics.

3. Planet Ekstra Surya


Para peneliti menemukan bahwa terdapat banyak sekali planet di luar tata surya. Salah satunya adalah planet HIP 13044b yang ditemukan oleh Astronom asal Indonesia, Johny Setiawan. Planet tersebut sebenarnya merupakan planet ekstra surya tetapi masuk ke galaksi Bima Sakti. Penemuan planet ekstra surya lainnya adalah adanya 7 planet yang mengorbit pada bintang HD 10180. 

Sementara, penemuan planet lainnya yang juga memukau adalah Gliese 581g, planet ekstra surya dikatakan mengorbit bintangnya pada jarak yang tak terlalu panas ataupun dingin, seperti bumi mengorbit matahari. Digadai-gadai beberapa planet tersebut jadi tujuan manusia sebagai pengganti bumi.

4. Penemuan Metamaterial


Penemuan ini dilakukan oleh Profesor Martin McCall dan Imperial College, London. Metamaterial yang dibuat dikatakan bisa “mengaduk” aliran energi elektromagnetik. cahaya yang melewati metamaterial tersebut akan terhambur secara tidak merata, membentuk gap antara ruang dan waktu. Sehubungan dengan metamaterial, bisa lihat di artikel alat-penyusut-benda-buatan-china

5. Muons


Para ilmuwan mengatakan bahwa jumlah materi dan anti materi yang dihasilkan sebelum big bang haruslah berbeda. Hanya perbedaan itulah yang memungkinkan terciptanya semesta. Sebelumnya, perbedaan itu hanya mungkin dalam teori. 

Percobaan partikel di Fermilab menemukan bahwa muons (partikel sub atomik seperti halnya elektron) yang dihasilkan memiliki kelebihan 1% anti muons. Perbedaan muons dan anti muons tersebut memang tidak terlalu banyak. Namun, para ilmuwan mengatakan bahwa jumlah itu cukup untuk memacu terciptanya semesta.

6. Bulan Lebih Basah Daripada Sahara


Misi Lunar Crater Observation and Sensing Satellite (LCROSS) berhasil menemukan keberadaan air di bulan cukup mengejutkan. Air yang terdapat di kutub selatan bulan itu terdapat dalam bentuk es yang tercampur dengan materi lain. Para peneliti mengatakan, es tersebut bisa diolah menjadi air murni. Dan jumlahnya lebih banyak daripada air di Gurun Sahara.

7. Piramida Teotihuacan di Meksiko


Para arkeolog yang meneliti Piramida Teotihuacan berhasil menemukan koridor selebar 12 kaki lengkap dengan bagian atapnya. Dengan penemuan koridor tersebut, para arkeolog berharap bisa mengetahui jalan menuju pemakaman para rabi atau pemimpin agama dalam peradaban Mexico tersebut.

8. Penemuan Australopithecus sediba


Para ilmuwan menemukan fosil Australopithecus sediba, sebuah spesies manusia purba di wilayah Malapa, Afrika Selatan. Fosil tersebut diduga berasal dari masa 2 juta tahun yang lalu. Para palaentolog menduga, fosil tersebut berkaitan dengan fosil manusia purba Homo erectus yang secara evolusioner kemudian berkembang menjadi Homo sapIens atau manusia modern. 

 
Design by Jery Tampubolon | Bloggerized by Jery - Rhainhart Tampubolon | Indonesian Humanis